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Setting

• Dependent type theory serves as a foundation for proof
assistants and programming languages

• It has well-established categorical semantics: contextual
categories, categories with families, display map categories,
natural models, etc

• Comprehension categories are a general semantic framework
for it.
Ahrens, Lumsdaine, and North [ALN24]:

”We take comprehension categories as a unifying language
and show how almost all established notions of model em-
bed as sub-2-categories (usually full) of the 2-category of
comprehension categories.”
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Motivation

Looking at the interpretation of Martin-Löf type theory (MLTT) in
comprehension categories:

the “semantics” arrow does not use all the features of

Two options:

1. Restrict the comprehension categories: usually done
2. Make the type theory more expressive: CCTT
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Why not Restrict the Models

• Are there interesting examples we would miss?
• Are there interesting features that we would lose?

More on this after some preliminaries

3 / 22



Outline

1. Review: Comprehension Categories

2. Back to Our Motivation

3. Our Work: Core Syntax CCTT

4. CCTT Captures Subtyping

5. Extending CCTT with Type Formers

6. Related Work



Outline

1. Review: Comprehension Categories

2. Back to Our Motivation

3. Our Work: Core Syntax CCTT

4. CCTT Captures Subtyping

5. Extending CCTT with Type Formers

6. Related Work



Comprehension Categories

Comprehension Category [Jac93, Definition 4.1]
A comprehension category consists of:

1. a category C,
2. a (cloven) fibration p : T → C,
3. a functor χ : T → C→ preserving cartesian arrows,

such that the following diagram commutes.

T C→

C

χ

p cod

A comprehension category is full if χ is full and faithful; it is split if
p is a split fibration.

Full split comprehension categories are models for MLTT.
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Comprehension Categories

T C→

C

χ

p cod

1. C: category of contexts and context morphisms
2. Fibre TΓ: category of types in context Γ
3. Substitution is captured by the reindexing functors
4. Extended context Γ.A is given by dom ◦ χ : A 7→ Γ.A
5. Γ ` t : A is interpreted as sections of χ(A) : Γ.A → Γ in C
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Vertical Morphisms

What about morphisms in a fibre TΓ?
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Back to Our Motivation

T C→

C

χ

p cod

A comprehension category can express both morphisms between con-
texts and morphisms between types.

Full split comprehension categories are models of MLTT: there is
only one such notion there; type morphisms can be recovered from
the terms of the theory.

Fullness ‘kills off’ this ‘extra dimension’ of morphisms. Later we will
see that this extra dimension could capture coercive subtyping.
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Interpretation of Intensional Type Theories

Are there interesting examples with this ‘extra dimension’ of mor-
phisms?

Intensional type theories, such as HoTT and Cubical are often given
semantics in an algebraic weak factorisation system (AWFS) [HS98;
GL23].

AWFSs give rise to comprehension categories. Contrary to the ones
that arise from CwFs, the comprehension categories from AWFSs
are typically not full.

EM(R) C→

C

U

cod

We capture this extra semantic structure in CCTT.
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Definitional Equalities

What else does having both terms and type morphisms buy us?
Tighter control over definitional equalities.

In homotopy theoretic models of MLTT from AWFSs: type mor-
phisms are morphisms preserving transport of structure along a term
of identity strictly, up to definitional equality.

(a = a′) → B(a) → B(a′)

One can add rules to CCTT that express type morphisms strictly
preserve transports, since strict preservation of these transports is
validated by models of CCTT.

An example of a commonly used function in MLTT that is a type
morphisms in these models: the first projection of a Σ-type.
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In This Work...

1. We design rules of a type theory that reflect the structure of
comprehension categories: CCTT

2. CCTT captures coercive subtyping: extends the work of Coraglia
and Emmenegger [CE24]

3. Extend CCTT with Π-, Σ- and Id-types
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CCTT: Judgements

1. Γ ctx
2. Γ ` s : ∆
3. Γ ` s ≡ s ′ : ∆
4. Γ ` A type
5. Γ|A ` t : B
6. Γ|A ` t ≡ t ′ : B

Judgement 5: a morphism JtK : JAK → JBK in the fibre TJΓK.
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CCTT: Structural Rules

Structural rules regarding the category of contexts:

Γ ctx ctx-mor-idΓ ` 1Γ : Γ
Γ ` s : ∆ ∆ ` s′ : Θ ctx-mor-comp

Γ ` s′ ◦ s : Θ

Γ ` s : ∆ ctx-id-unitΓ ` s ◦ 1Γ ≡ s : ∆
Γ ` 1∆ ◦ s ≡ s : ∆

Γ ` s : ∆ ∆ ` s′ : Θ Θ ` s′′ : Φ ctx-comp-assoc
Γ ` s′′ ◦ (s′ ◦ s) ≡ (s′′ ◦ s′) ◦ s : Φ

We have similar rules for the category of types.
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CCTT: Structural Rules

See the paper for the rest of the structural rules: substitution, con-
text extension, etc

Theorem (Soundness)
Every comprehension category models the rules of CCTT.

Next, we discuss some of the rules through the lens of subtyping.
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Subtyping in CCTT

Coraglia and Emmenegger [CE24] observe that the vertical mor-
phisms can be thought of as witnesses for coercive subtyping.

Γ|A ` t : B  Γ ` A ≤t B
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Subtyping: Subsumption

Proposition (Subsumption)

From the rules of CCTT, we can derive the following rule.

Γ ` A, B type Γ ` A ≤t B Γ ` a : A
Γ ` Γ.t ◦ a : B

Γ.A Γ.B

Γ

Γ.t

a b

Γ.t is like a coercion function for A ≤t B.
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Subtyping: Weakening and Substitution

We have the following rule in CCTT, which corresponds to substi-
tution for subtyping.

∆ ` A, B type ∆ ` A ≤t B Γ ` s : ∆
Γ ` A[s] ≤t[s] B[s]

Proposition (Weakening for Subtyping)
From the rules of CCTT, we can derive the following rule.

Γ ` A, A′, B type Γ ` A ≤t A′

Γ.B ` A[πB ] ≤t[πB ] A′[πB′ ]
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Subtyping for Type formers

1. Extend CCTT with a type former (e.g. Σ-types) and show
soundness: naturally, no rules involving judgements of the form
Γ ` A ≤t B get added.

2. Extend CCTT with subtyping for the type former and show
soundness: we see how through an example!
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Example: Σ-types

Extend CCTT with Σ-types, e.g.:

Γ ` A type Γ.A ` B type
sigma-form

Γ ` ΣAB type

Γ ` A type Γ.A ` B type
sigma-intro

Γ.A.B ` pairΣAB : Γ.ΣAB

Γ ` A type Γ.A ` B type
sigma-elim

Γ.ΣAB ` projΣAB : Γ.A.B

Γ ` A type Γ.A ` B type
sigma-beta-eta

Γ.A.B ` projΣAB ◦ pairΣAB ≡ 1Γ.A.B : Γ.A.B
Γ.ΣAB ` pairΣAB ◦ projΣAB ≡ 1Γ.ΣAB : Γ.ΣAB

∆ ` A type ∆.A ` B type Γ ` s : ∆
subst-sigma

Γ | ΣA[s]B[s.A]
∼
` iΣAB,s : (ΣAB)[s]
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Example: Subtyping for Σ-types

1. We want to have the following rule:
Γ ` A, A′ type Γ.A ` B type Γ.A′ ` B′ type

Γ ` A ≤f A′ Γ.A ` B ≤g B′[Γ.f ]
Γ ` ΣAB ≤Σ(f ,g) ΣA′ B′

Σ acts covariantly on both arguments.

2. The coercion function for ΣAB ≤Σ(f ,g) ΣA′B ′ should act as
follows:

Γ.ΣAB Γ.A.B Γ.A.B′[χ0f ] Γ.A′.B′ Γ.ΣA′ B′projΣAB χ0g χ0f .B′ pairΣA′ B′

3. Rules for functoriality for Σ(−, −)
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Comprehension Categories with Subtyping for Σ-types

Definition
A comprehension category (C, T , p, χ) has subtyping for Σ-types if
it has dependent sums and is equipped with a function giving for
each f : A → A′ in TΓ and g : B → B ′[χ0f ] in TΓ.A, a morphism

Σf g : ΣAB → ΣA′B ′

in TΓ such that:
1. χ0(Σf g) is the following composite

Γ.ΣAB Γ.A.B Γ.A′.B′[χ0f ] Γ.A′.B′ Γ.ΣA′ B′projΣAB χ0g χ0f .B′ pairΣA′ B′

2. Σ(−)(−) preserves identities and composition

Theorem
Any comprehension category with subtyping for Σ-types models
CCTT extended with subtyping for Σ-types.
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Related Work

• Zeilberger and Melliès [MZ15] give a fibrational view of
subsumptive subtyping.

• Coraglia and Emmenegger [CE24] study type morphisms as
witnesses for coercive subtyping.

• Laurent, Lennon-Bertrand and Maillard [LLM24] extend
MLTT to a type theory with definitionally functorial type
formers and use this to extend MLTT to two type theories
with coercive and subsumptive subtyping.

• Adjedj, Benjamin, Lennon-Bertrand and Maillard [Adj+25]
develop a type theory modelled by split generalized categories
with families and provide a general framework for defining
type formers that are automatically functorial.
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Summary

• We presented CCTT, which reflects the structure of a compre-
hension category.

• With this we gain back the ‘extra dimension’ of morphisms
which is usually ‘killed off’. This ‘extra dimension’ captures
coercive subtyping.

Thank you for your attention!
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